P3 Jue 14 M.A. Uprime 2

Lesve blam:

(2)

(4)

(2)

1. The line *l* passes through the point P(2, 1, 3) and is perpendicular to the plane *II* whose vector equation is

 $\mathbf{r.}(\mathbf{i}-2\mathbf{j}-\mathbf{k})=3$

Find

- (a) a vector equation of the line l,
- (b) the position vector of the point where l meets Π .
- (c) Hence find the perpendicular distance of P from Π .

4 - 3 1(a). [= 6 = 2 -24 - 7=3 2+1-2(1-2) $(3 - \lambda) = 3$ 2+1 -2+42 -3+2=3 2 6 Y = =) ショ 3 Intersection : 6 -'. 2 Scanned by CamScanner

Question 1 continued 2-3 (c) $\begin{pmatrix} 3\\ -1\\ 2 \end{pmatrix}$ 213 d = 16 12+22+12 -16 Q1 Total 8 Scanned by **ier** Car

Long hims

- $\mathbf{M} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & 1 \\ 0 & 5 & 0 \end{pmatrix}$
- (a) Show that matrix M is not orthogonal.

2.

(b) Using algebra, show that 1 is an eigenvalue of M and find the other two eigenvalues of M.
 (5)

(2)

(2)

(c) Find an eigenvector of M which corresponds to the eigenvalue 1

The transformation $M : \mathbb{R}^3 \to \mathbb{R}^3$ is represented by the matrix **M**.

(d) Find a cartesian equation of the image, under this transformation, of the line

Leave blank Question 2 continued in a particular providence in a second secon $(1-\lambda)(-\lambda^2-4\lambda-5)=0$ $: (1-\lambda)(\lambda - 5.)(\lambda + 1) = 0$ =) $\lambda = 1$.: $\lambda = 1$ is indeed on g. value A=-1 are also & values (c)Mn=2 2 A 2 0 J 4+2Z 44+Z 2 4 = n+27=n =) 27=0 =) 44+2= 4=) 38=-2 57=7 20 2=0=) y=0, let n=1 An engenvector is θ CamScanner over

Question 2 continued

Leave blaul

3. Using calculus, find the exact value of

- (a) $\int_{1}^{2} \frac{1}{\sqrt{(x^2 2x + 3)}} dx$
- (b) $\int_0^1 e^{2x} \sinh x \, dx$

8

Scanned by CamScanner

Leave

blank

(4)

blank Question 3 continued Jersinha da (\mathbf{L}) ezn $e^n - e^{-n}$ Jx e³² - eⁿ dx 0 - e D e" e e e³-e + = Ξ Scanned by CamScanner Turn over

9

- 4. Using the definitions of hyperbolic functions in terms of exponentials,
 - (a) show that

12

$$\operatorname{sech}^2 x = 1 - \tanh^2 x$$

Leave blank

(3)

(b) solve the equation

 $4\sinh x - 3\cosh x = 3$ (4) 4(a). 2 P RHS = 1-Sh e" +e 2 ~ 2 e r+e e P e len+e en te

Genned by CamScanner

5. Given that $y = \operatorname{artanh} \frac{x}{\sqrt{1+x^2}}$ show that $\frac{dy}{dx} = \frac{1}{\sqrt{(1+x^2)}}$ (4) 5. $y = artanh \frac{n}{\sqrt{1+n^2}}$ $tanhy = \frac{n}{\sqrt{1+n^2}}$ Differentiate: $\operatorname{Sech}^{2} y \cdot \frac{\partial y}{\partial n} = (1+n^{2})^{1/2} - \chi \left[\frac{1}{2} (1+n^{2})^{1/2} \cdot 2 \chi \right]$ 1+22 : Sech²y $\frac{\partial y}{\partial n} = \sqrt{1+n^2} - n \left(\frac{\chi}{2\sqrt{1+n^2}}\right)$ 1+72 $\frac{\pi^2}{1+\pi^2}$ sech = 1-tanh == $\frac{n^2}{1+n^2}$ $\frac{\partial y}{\partial n} =$ $\frac{1+n^2-x^2}{(1+n^2)^{3/2}}$

blank

Question 5 continued -Sr 312 2 1+2 + 2 2 2% 912 2 -112 -312 Itn 2 • - 21 dy =) 20 1-1+22 equired

6. [In this question you may use the appropriate trigonometric identities on page 6 of the pink Mathematical Formulae and Statistical Tables.]

The points $P(3\cos\alpha, 2\sin\alpha)$ and $Q(3\cos\beta, 2\sin\beta)$, where $\alpha \neq \beta$, lie on the ellipse with equation

- $\frac{x^2}{9} + \frac{y^2}{4} = 1$
- (a) Show the equation of the chord PQ is

$$\frac{x}{3}\cos\frac{(\alpha+\beta)}{2} + \frac{y}{2}\sin\frac{(\alpha+\beta)}{2} = \cos\frac{(\alpha-\beta)}{2}$$

(b) Write down the coordinates of the mid-point of PQ.

Given that the gradient, m, of the chord PQ is a constant,

(c) show that the centre of the chord lies on a line

$$y = -kx$$

expressing k in terms of m.

16

$$6 (a). Gradient of the d $ll = 2\sin \beta - 2\sin \chi$

$$3\cos \beta - 3\cos \chi$$

$$- y - y, = m(\pi - \pi)$$

$$- y - 2\sin \chi = \frac{2\sin \beta - 2\sin \chi}{3\cos \beta - 3\cos \chi} (\pi - 3\cos \chi)$$

$$- \frac{y - 2\sin \chi}{3\cos \beta - 3\cos \chi} (\pi - 3\cos \chi)$$$$

Scanned by CamScanner

blank

(4)

(1)

(5)

Question 6 continued

2 Sin Booso - 2 sind cosd : y-25md = 25mB -25mp x Cos B-cost 3 EDSB-3610K X COSP Sin Busk - chilles 3 CosB-cost g - sug = cosB-cosd use identities: $\sin(\beta) - \sin(\alpha) = 2\cos(\frac{\chi+\beta}{2})$ Sin cos B-cosx = -2sin _X+B sin Sub Th T $\frac{\alpha + \beta}{2}$ $\int \ln \left(\frac{\beta - \alpha}{2} \right)$ $\frac{1}{2}$ - sind = $\frac{2}{3}$ 2 cos COSK(SINB-SIN -2 sinfx+B Cas B-cos Sin Cos los $-\frac{y}{z} - sind = -$ + COS X SM 5+1 17

Scanned by CamScanner

blank

blank **Question 6 continued** <u>xtb</u> SM $\frac{\forall}{2}$ sm $\left(\frac{\chi+B}{2}\right)$ - sma $\sin\left(\frac{\chi+B}{2}\right) = -\frac{n}{3}\cos\left(\frac{\chi+B}{2}\right)$ * + cos x (cos (2) $\frac{x}{3}\cos\left(\frac{x+B}{2}\right) + \frac{y}{2}\sin\left(\frac{x+B}{2}\right) = \cos \alpha \cos\left(\frac{x+B}{2}\right) + \sin \alpha \left(\frac{x+B}{2}\right)$ XtB RHS = COSXCOS (X+B) +SIMKSIM $\cos\left(\alpha - \frac{(\chi + B)}{2}\right)$ Cos 2d cos $\frac{1}{2}\cos\left(\frac{X+B}{2}\right) + \frac{2}{2}\sin\left(\frac{X+B}{2}\right)$ AtB Cos as .

CamScanner

18

t Leav Question 6 continued blan 32 b cost t cos B, SENX + Sin B 1 .

Leave blank **Question 3 continued** 2 SIMB-sind 3 CosB-cosd (C) Gradient= 2 cot (2) - m mix cont X = 3 (osd+corB) = 3 (2cos a+B cos A=B) Y = smk + smB = 2 sma + B cos 2smd+B Los Cos Att Co. 3 X7B -tan -2 cot (=) >M 1F (K+B) fan 2 M X YE h = =) 0 Q3 (Total 8 marks) 11

CamScannerer

A circle C with centre O and radius r has cartesian equation $x^2 + y^2 = r^2$ where r is a 7. constant. (a) Show that $1 + \left(\frac{dv}{dx}\right)^2 = \frac{r^2}{r^2 - x^2}$ (3) (b) Show that the surface area of the sphere generated by rotating C through π radians about the x-axis is $4\pi r^2$. (5) (c) Write down the length of the arc of the curve $y = \sqrt{1 - x^2}$ from x = 0 to x = 1(1) 7(a). x + y2=12 = 2n + 2y dr = 0 $n + y \frac{\partial y}{\partial n} = 0$ y 25 = 7 2 94 RHS = cquied

Leave

- 2 (1- 1) -1/2 Leave blank **Question 7 continued** (L) S= 2π 90 dr 27 r2 2 2 J x 2 2 211 dx r 21 -271 2 271 4TT2 required y2= 1-22 (a)m2+y2=1 Criram Gerence 211 27 -, Arc leng for 21 - . 1 -21

CamScanner

Lease blank e li Question 8 continued P bxc Control Post 1 1 1. 6 2 1 -1 1 ---0 6 -2 0 ニー 0 6 as required (cF lic They ange Sam ¢Λ .

$$I_n = \int (x^2 + 1)^{-n} \, \mathrm{d}x, \quad n > 0$$

(a) Show that, for n > 0

$$I_{n+1} = \frac{x(x^2+1)^{-n}}{2n} + \frac{2n-1}{2n}I_n$$

Leav

(5)

(b) Find I,

$$J_{\Lambda} = \int (\pi^{2}+1)^{-\Lambda} \partial \pi^{-1} d\pi^{-1} d\pi^{-$$

9.

 $J_{n} = n(n^{2}+1)^{n} + 2n(I_{n} - I_{n+1})^{n}$ $\chi (\chi^2 + 1)^{-n} + 2n J_n - 2n J_{n+1}$ $I_{0} =$ -2n x (x2+1)-1 In. $+ I_{\Lambda} - I_{\Lambda+1}$ $\frac{\chi(n^2+1)}{2n} + (1-\frac{1}{2n})I_{\eta}$ N (n2+1 21required

• Question 9 continued 6 2 In 2 2 1 222+2 · • : : : 12 3 X an 0 2 £ 15 5 .