F322: Chains, Energy and Resources 2.2.4 Alcohols

167 marks

1.	This question is al	bout the six alcohols belo	ow.		
	2	outan-2-ol 2-methylpentan-3-ol oropan-1-ol	2-	hane-1,2-diol methylpropan-2-ol ·opan-2-ol	
	Which alcohol is a	in example of a tertiary a	Ilcohol?		
					 [Total 1 mark]
2.	Ethane-1,2-diol ca	ın be dissolved in water	to act as an	anti-freeze in car radiator	S.
	Explain why ethan	ne-1,2-diol is very soluble	e in water.		
					[Total 2 marks]
3.		heated under reflux with nd A is formed with mole		id and a small amount of a $C_6H_{10}O_4$.	H ₂ SO ₄
	Draw the structure	of compound A.			
					[Total 2 marks]

Buta	an-2-ol is heated with H ₂ SO ₄ catalyst.			
•	A mixture of three alkenes forms, B , C and D . The alkenes B and C are stereoisomers.			
(i)	Draw the structures of the two stereoisomers B and C .			
		[2]		
(ii)	What type of stereoisomerism is shown by B and C ?			
		[1]		
(iii)	Draw the structure of the other alkene, D , that is formed in this reaction.			
		[1] [Total 4 marks]		

4.

5. Alcohol **E** is one of the following alcohols.

butan-2-ol ethane-1,2-diol 2-methylpentan-3-ol propan-1-ol propan-2-ol

A student oxidises alcohol ${\bf E}$ by heating under reflux with excess acidified potassium dichromate(VI). An organic product ${\bf F}$ is isolated.

The mass spectrum of the alcohol **E** is shown below.

The infrared spectrum of the organic product **F** is shown below.

- Name or draw the structures of the alcohol E and the organic product F.
- Write an equation for the reaction of alcohol **E** with acidified potassium dichromate(VI).

Use [O] to represent the oxidising agent, acidified potassium dichromate(VI).

In your answer, you should make clear how each structure fits with the information given above.

[Total 7 marks]

6. Alcohols A, B, C and D are shown below.

(a) Compound **A** is ethanol, a very useful alcohol.

> Identify the two main methods used in the industrial production of ethanol. Write an equation for each method.

method 1	
equation	
method 2	

equation

[4]

- (b) A student heated each alcohol, **A–D**, with acidified potassium dichromate(VI) as the oxidising agent. With alcohols **A**, **B** and **C**, the colour turned from orange to green.
 - (i) Identify the organic product and write a balanced equation for the reaction of alcohol **B** with acidified potassium dichromate(VI).

Use [O] to represent the oxidising agent, acidified potassium dichromate(VI).

organic product:

balanced equation:

[2]

(ii) The organic product obtained from **C** was analysed by infrared (IR) spectroscopy.

The IR spectrum of the product is shown below.

wavenumber / cm⁻¹

		Use your <i>Data Sheet</i> to identify the organic product. Explain your reasoning.	
		organic product:	
		reasoning	
			[3]
(c)		student heated alcohol D with ethanoic acid in the presence of an acid lyst. An organic product E was formed with a fruity smell.	
	(i)	Name alcohol D .	
			[1]
	(ii)	Name the functional group in the organic product E .	
			[1]
	(iii)	Draw the structure of the organic product E .	

[2]

[Total 13 marks]

7. Ethanol, C₂H₅OH, is manufactured on a large scale for a wide range of uses such as alcoholic drinks, as an industrial solvent and as a raw material for the synthesis of many organic compounds.

Ethanol, C₂H₅OH, is manufactured on a large scale by two methods:

Fermentation, using yeast, of sugars, such as glucose, C₆H₁₂O₆.

$$C_6H_{12}O_6(aq) \rightarrow 2C_2H_5OH(aq) + 2CO_2(g)$$

The ethanol is then distilled off.

• Hydration of ethene, C₂H₄, with steam in the presence of an acid catalyst.

$$C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(g)$$

Compare the sustainability of these methods of manufacturing ethanol in terms of:

- availability of starting materials and energy requirements;
- atom economy.

7	In your answer, you should make clear how the atom economy of the processes links with chemical theory.	
	[Total 7 m	narks]

- **8.** In the laboratory, ethanol can be oxidised with acidified potassium dichromate(VI).
 - (a) The ethanol can be oxidised to form either ethanal, CH_3CHO (**Fig. 1**), or ethanoic acid, CH_3COOH (**Fig. 2**).

The boiling points of ethanol, ethanal and ethanoic acid are given in the table below.

	CH ₃ CH ₂ OH	CH₃CHO	CH₃COOH
boiling point / °C	8	21	118

Use this table of boiling points to explain:

(i)	why the organic product is likely to be ethanal if the apparatus shown in Fig. 1 is used,

Plymstock School 8

[2]

		(ii)	why the organic product is likely to be ethanoic acid if the apparatus s in Fig. 2 is used.	shown
				[2]
	(b)		e a balanced equation for the oxidation of ethanol to ethanoic acid. Use esent the oxidising agent.	e [O] to
				 [2] [Total 6 marks]
9.	Etha	inol ca	in be formed by fermentation of glucose, C ₆ H ₁₂ O ₆ .	
	(i)		e a balanced equation, including state symbols, for the formation of ethermentation.	anol
				[2]
	(ii)		nentation only occurs in the presence of yeast. State two other essenti litions.	
				 [2]
	(iii)	How	would you know when fermentation of glucose is complete?	
				[1] [Total 5 marks]

10.	Propan-2-ol is flammable	and readily	/ hurns
10.	1 Topan-2-of 13 naminable	and readily	, builis.

Write a balanced equation for the complete combustion of propan-2-ol.

[Total 2 marks]

11. Four possible structural isomers of $C_4H_{10}O$ are alcohols. Two are shown below.

(i) Draw the other two structural isomers of $C_4H_{10}O$ that are alcohols

isomer 1	isomer 2

[2]

(ii) Name isomer 1.

[1]

[Total 3 marks]

		[Tota	al 3 m
(a)	Buta	an-1-ol can be oxidised to form butanal.	
	(i)	State a suitable oxidising mixture for this reaction.	
	(ii)	State the colour change you would see during this oxidation.	
		from to	
(b)	infra	ample of the butanal from (a) was analysed using infra-red spectroscopy. The red spectrum contained an absorption in the region 1680–1750 cm ⁻¹ but contain a broad absorption in the region 2500–3300 cm ⁻¹ .	
	Refe	er to the Data Sheet for Chemistry provided.	
	(i)	What does the absorption in the region 1680–1750 cm ⁻¹ indicate?	
	(ii)	What does the absence of a broad absorption in the region 2500–3300 cm ⁻¹ indicate?	

12. Butan-2-ol can be dehydrated to produce a mixture of three alkenes each with a

(iii)	The reaction in (a) was carried out using distillation and not reflux.				
	Explain why.				
		וכז			
	[Total 7	[2] marks]			

14. (a) Cyclohexane can be converted into cyclohexene via a three-stage synthesis.

(i) In stage 1, cyclohexane reacts with chlorine to form the organic product, compound **A**.

Show the structure of compound **A**.

(ii) Stage 3 involves the dehydration of an alcohol.

State a suitable reagent for dehydrating an alcohol.

(iii) Write a balanced equation for the dehydration of cyclohexanol, $C_6H_{11}OH$.

[1]

(b) The reaction in stage 1 is difficult to control. One other possible chlorinated product is 1,4-dichlorocyclohexane. This is shown below.

cyclohexane

1,4-dichlorocyclohexane

- 1,4-Dichlorocyclohexane reacts in the same way as compound ${\bf A}$ in stages 2 and 3.
- (i) Suggest the structure of compound **B**.

[1]

(ii) Two cyclic alkenes, **C** and **D** are formed in stage 3. **C** and **D** are structural isomers. Suggest the structures of **C** and **D**.

[2]

[Total 6 marks]

15. Ethanol and glycerol (propane-1,2,3-triol) are both produced industrially on a large scale.

Ethanol is manufactured by both fermentation and the hydration of ethene. Glycerol is produced as a by-product of soap manufacture.

The relatively low volatility of alcohols such as ethanol can be explained by the existence of intermolecular bonds.

(i)	Explain what is meant by the term	าร
-----	-----------------------------------	----

low volatility,
intermolecular bonds

(ii) On the ethanol molecules below, label any relevant dipoles, show the intermolecular bond formed and state the type of intermolecular bond.

type of intermolecular bond

[3]

[2]

(iii) Glycerol forms the same type of intermolecular bonds as ethanol. Predict, with a reason, whether the boiling point of glycerol will be higher or lower than that of ethanol.

The boiling point of glycerol will be	than that of ethanol because

[1]

[Total 6 marks]

- **16.** This question is about the halogenoalkane 2-chlorobutane.
 - 2-Chlorobutane reacts with NaOH, but the products are dependent on the solvent used.

- 2-Chlorobutane reacts with OH⁻ in aqueous conditions to produce alcohol **A**.
- (i) Identify alcohol A.

[1]

(ii) Describe, with the aid of curly arrows, the movement of the electrons in the mechanism. Show any relevant dipoles, lone pairs of electrons and the products.

[4]

[Total 5 marks]

- **17.** Compound **E** can be oxidised to form a carboxylic acid.
 - (i) State a suitable oxidising mixture for this reaction.

.....

[2]

(ii) Write a balanced equation for this oxidation of compound **E**.

Use [O] to represent the oxidising mixture.

$$\begin{array}{c} \text{H}_{3}\text{C} \\ \text{C} \\ \text{CH}_{3}\text{CH}_{2}\text{CH}_{2} \\ \text{compound } \mathbf{E} \end{array}$$

[3]

Explain how compound **E** and the carboxylic acid could be distinguished by (iii) infra-red spectroscopy.

[1]

[Total 6 marks]

18. In the presence of a suitable catalyst, cyclohexanol reacts with compound Y. (a) The organic product is shown in the equation below.

(i) State a suitable catalyst.

[1]

Identify compound Y. (ii)

[1]

	(b)	Cycl	lohexanol can also be oxidised to form cyclohexanone.	
		(i)	State a suitable oxidising agent for this reaction.	
				[1]
		(ii)	Write a balanced equation for the oxidation of cyclohexanol to cyclohexanone. Use [O] to represent the oxidising agent.	
				[1] [Total 4 marks]
19.	Etha	anol, C	$\mathrm{C}_2\mathrm{H}_5\mathrm{OH}$, can be produced by the fermentation of glucose, $\mathrm{C}_6\mathrm{H}_{12}\mathrm{O}_6$.	
	Writ	e a ba	alanced equation for the fermentation of glucose.	
				 [Total 2 marks]
20.			as a relatively high boiling point. This can be explained in terms of cular hydrogen bonds.	
	hydı		econd molecule of ethanol alongside the one drawn below and show he bond could be formed. Clearly show any relevant dipoles and lone page	

[Total 3 marks]

21. (a) When ethanol is heated with acidified potassium dichromate(VI) solution, it can be oxidised to form either ethanal, CH₃CHO (Fig. 1), or ethanoic acid, CH₃COOH (Fig. 2).

Fig. 1 Fig. 2

The boiling points of ethanol, ethanal and ethanoic acid are given in the table below.

	CH ₃ CH ₂ OH	CH ₃ CHO	CH₃COOH
boiling point/ °C	78	21	118

Use this table of boiling points to explain

(i)	why the organic product is likely to be ethanal if the apparatus shown in Fig. 1 is used,

[2]

	(ii)	why the organic product is likely to be ethanoic acid if the apparatus shown in Fig. 2 is used.	
			[2]
(b)		e a balanced equation for the oxidation of ethanol to ethanoic acid. Use (O) present the oxidising agent.	
			[2]

(c) The ethanal collected using the apparatus shown in Fig. 1 was analysed by infra-red spectroscopy. Use your *Data Sheet* to justify which of the three spectra shown below is most likely to be that of ethanal.

wavenumber/cm-1

Plymstock School 21

100 4000

	The	organic product collected when using	the apparatus shown in Fig. 1 is most	
	likel	y to be that shown by spectrum	because	
			[Total	[3] 9 marks]
for t	he ma	CH_2 ==CHCHO, and acrylic acid, CH_2 = Inufacture of plastic resins and polyme from prop-2-en-1-ol, CH_2 ==CHCH $_2$ OH.	rs. Both acrolein and acrylic acid can	
(a)	(i)	Draw the structures of prop-2-en-1-o functional groups in each compound.		
		prop-2-en-1-ol	acrolein	
	(ii)	Name the functional group common	to both prop-2-en-1-ol and acrolein.	[2]
				[1]
(b)	Prop	o-2-en-1-ol can be oxidised to form eith	ner acrolein or acrylic acid.	
	(i)	Identify a suitable oxidising mixture.		
				[2]
	(ii)	Write a balanced equation for the oxiUse (O) to represent the oxidising ag	idation of prop-2-en-1-ol into acrolein. gent.	
				[1]
			[Total	6 marks]

22.

23	Acrylic	acid	reacte	with	prop-2-er	1-01 to	nroduce	an Astar
ZJ.	ACI VIIC	aciu	reacts	WILLI	prop-z-er	1- 1-01 to	produce	an ester.

(i) Complete the balanced equation for this reaction.

$$\mathsf{CH}_2 \texttt{==} \mathsf{CHCOOH} + \mathsf{CH}_2 \texttt{==} \mathsf{CHCH}_2 \mathsf{OH} \to \dots \\ + \dots \\ +$$

[2]

(ii) Draw the structure of the ester. Clearly display **all** of the functional groups.

[2]

[Total 4 marks]

24. (a) There are four structural isomers of $C_4H_{10}O$ that are alcohols. One of the isomers has been drawn for you.

Complete the table below to show the other structural isomers.

H H H H			
butan-1-ol	isomer 1	isomer 2	isomer 3

[3]

(b) Butan-1-ol is oxidised by an acidified solution of potassium dichromate(VI) to

form a carboxylic acid.

	(i)	State the colour change that you would see.	
		Colour changes from to	[4]
	(ii)	Write a balanced equation for this oxidation of butan-1-ol to form a carboxylic acid. Use [O] to represent the oxidising agent.	[1]
			[2]
	(iii)	Identify which of the isomers, 1 , 2 or 3 , in (a) could also be oxidised to form a carboxylic acid.	
		isomer	
			[1]
(c)	Butar	n-1-ol reacts with hot concentrated sulphuric acid to form compound B .	
	(i)	Compound ${\bf B}$ has an empirical formula of ${\rm CH_2}$ and a relative molecular mass of 56. Use this information to deduce the molecular formula of compound ${\bf B}$. Show your working.	
	(ii)	Write a balanced equation to show the conversion of butan-1-ol into compound B .	[2]
			[1]
	(iii)	One of the isomers, 1 , 2 or 3 , in (a) also reacts with hot concentrated sulphuric acid to form compound B .	
		Identify which isomer. isomer	[1]

(d) The ester, CH₃COOCH₂CH₂CH₂CH₃, was formed by reacting ethanoic acid with

(')	State a sataryst for time reaction.	
		[1]
(ii)	In an experiment, 6.96 g of the ester was produced from 0.100 mol of butan-1-ol. Calculate the number of moles of ester produced.	
		[1]
(iii)	Calculate the percentage yield.	
		[1]
	סדן	otal 14 marks]

25. Citronellol, $C_{10}H_{20}O$, occurs naturally in both rose and geranium oils. The structural and skeletal formulae of citronellol are shown below.

(i)

State a catalyst for this reaction

- (b) The functional groups in citronellol can be identified either by chemical tests or by infrared spectroscopy.
 - (i) State which of the two functional groups you named in (a) is:
 - 1 identified when bromine is added to citronellol,
 - 2 more easily identified from the infra-red spectrum.

[1]

[1]

(ii) State what you would **see** when bromine is added to citronellol.

(iv) The infra-red spectrum of citronellol is shown below. Mark on this spectrum, with the letter **X**, the absorption that confirms the presence of the functional group that is most easily identified from this spectrum.

[1]

(c) Reaction of a sample of citronellol, $C_{10}H_{20}O$, with hydrogen in the presence of a catalyst results in the formation of a saturated compound $\bf C$.

(1)	Suggest a Catalyst for this reaction.	
		[1]
(ii)	Determine the molecular formula of the saturated compound C .	
		[1]
(iii)	Construct a balanced equation for this reaction.	

[Total 9 marks]

[1]

26. (a) Write an equation for the combustion of ethanol.

[2]

(b) In this question, one mark is available for the quality of written communication.

Describe, with the aid of equations, the industrial manufacture of ethanol from glucose, $C_6H_{12}O_6$, and from ethene, C_2H_4 . Name each type of reaction and state all essential conditions.

Future supplies of ethanol are likely to come from glucose rather than from ethene. Explain why.

[9]

Quality of Written Communication [1]

[Total 12 marks]

27. This question is about the compounds **A-F** below.

(a) Answer the following questions by referring to the compounds A-F.

(i)	What is the molecular formula of compound D ?	
		[1]
(ii)	What is the empirical formula of compound C ?	
		[1]
		1.1
(iii)	Which two compounds are structural isomers of each other?	
	and	
		[1]
(iv)	Which two compounds are <i>cis-trans</i> isomers of each other?	
	and	
		[1]

(b) Compound **E** can be dehydrated to form compound **A**. Complete a balanced equation for this reaction.

[1]

(c) Compound ${\bf C}$ can be dehydrated to form a new compound, ${\bf G}$, with the molecular formula, C_4H_6 . Suggest a structural formula and a name for ${\bf G}$.

name

[2]

[Total 7 marks]

Lavandulol, $C_{10}H_{18}O$, is a fragrant oil which is found in lavender. The structural and the 28. skeletal formulae of lavandulol are shown below.

structural formula

(a)	(1)	Identify two different functional groups in lavandulol.	
		and	[2]
	(ii)	Why does lavandulol not have <i>cis-trans</i> isomerism?	
			[1]
(b)	Lava prod	indulol, $C_{10}H_{18}O$, also reacts with bromine to form a saturated organic uct.	
		e what you would see in this reaction and deduce the molecular formula of organic product.	
	obse	ervation	
			[1]
	mole	cular formula	

[2]

(c) Lavandulol could be converted into an ester X, which is also found in lavender oil.

ester X

State a reagent and a catalyst that could be used to form ester **X** from lavandulol.

reagent

[1]

catalyst

[1]

(d) Lavanduloi can be oxidised to produce either compound ${\bf Y}$ or compound ${\bf Z}$.

lavandulol compound
$$\mathbf{Y}$$
 $\mathbf{C}_{10}\mathbf{H}_{18}\mathbf{O}$ $\mathbf{C}_{10}\mathbf{H}_{16}\mathbf{O}$ COOH
$$\mathbf{Z}_{\mathbf{C}_{10}\mathbf{H}_{16}\mathbf{O}_{2}}$$

(i)	Write a balanced equation for the oxidation of lavandulol to produce compound Z . Use the molecular formulae given above and use [O] to represent the oxidising agent.		
		[2]	
(ii)	An infra-red spectrum of either compound \mathbf{Y} or compound \mathbf{Z} was obtained and was found to contain an absorption between $1680-1750~\text{cm}^{-1}$. However, there was no broad absorption between $2500-3300~\text{cm}^{-1}$.		
	By referring to your <i>Data Sheet</i> , use this information to deduce whether the infra-red spectrum was of compound Y or of compound Z . Show your reasoning.		
	The infra-red spectrum was of compound because		
		[2]	
	ITatal 42 m.	[2]	
	[Total 12 ma	ai KS	