ML JUNE OP
1)

$$
\begin{aligned}
& \frac{P}{14}+\frac{2000 g}{25}=1600 \\
& \frac{P}{14}=816 \Rightarrow P=11424 \mathrm{u} \\
& P=11.4 \mathrm{hw}(3 \mathrm{sf})
\end{aligned}
$$

2)

$$
\begin{aligned}
e & =\frac{4 e u-v_{A}}{u} \\
e u & =4 e u-v_{A} \\
\Rightarrow v_{A} & =3 e u .
\end{aligned}
$$

$$
\begin{aligned}
\text { CuM } \Rightarrow & 12 m u+6 m u=4 m \times 3 e u+3 m \times 4 e u \\
& 18 m u=24 m e x \quad \Rightarrow e=\frac{18}{24} \Rightarrow e=\frac{3}{4}
\end{aligned}
$$

b)

$$
\begin{aligned}
& K E_{\text {before }}=\frac{1}{2}(4 m)(3 u)^{2}+\frac{1}{2}(3 m)(2 u)^{2}=24 m u^{2} \\
& V_{A}=\operatorname{seu}=3\left(\frac{3}{4}\right) u=\frac{9}{4} u \quad V_{B}=4 e u=4\left(\frac{3}{4}\right) u=3 u \\
& \text { WE after }=\frac{1}{2}(4 m)\left(\frac{9}{4} u\right)^{2}+\frac{1}{2}(3 m)(3 u)^{2}=\frac{189}{8 m u^{2}} \\
& \Rightarrow U E_{\text {lost }}=\frac{3}{8} \mathrm{man}^{2} J .
\end{aligned}
$$

3)

$$
\begin{aligned}
& \text { loss in } K E=\frac{1}{2}(3.5)\left(12^{2}-8^{2}\right)=140 \mathrm{j} \\
& \text { loss in } P E=3 . \operatorname{sg}(14 \sin 20)=164.238 \ldots \mathrm{~J}
\end{aligned}
$$

Total Energy lost $=304 \mathrm{y}$ (3st)
b) Total Energy lost $=$ wd against friction $=$ flax $\times 14$

$$
\begin{aligned}
& f_{\max }=\mu N R=\mu(3.5 g \sin 70) \\
& 304.238 \ldots=\mu \times 32.2314 \ldots \times 14 \\
& \mu=0.67 \text { (2sf) }
\end{aligned}
$$

4)

$$
\begin{aligned}
& F=(6 t-5) i+\left(t^{2}-2 t\right) j=m a=\frac{1}{2} a \\
& \Rightarrow a=(12 t-10) i+\left(2 t^{2}-4 t\right) ; \\
& v=\int a d t=\left(6 t^{2}-10 t+c_{1}\right) i+\left(\frac{2}{3} t^{3}-2 t^{2}+c_{2}\right) j \\
& t=0 \quad V=i-4 j=c_{1} i+c_{2} j \quad c_{1}=1 \quad c_{2}=-4 \\
& v=\left(6 t^{2}-10 t+1\right) i+\left(\frac{2}{3} t^{3}-2 t^{2}-4\right) ; \\
& t=3, \quad v=25 j+-4 j \quad \text { Mom at } t=3=m v=12 \cdot \operatorname{si}-2 j \\
& + \text { Impulse }=-S_{i}+12 j \\
& \Rightarrow \text { Mom after }=m v=7.5 i+10 j \\
& \Rightarrow V \text { after }=15 i+20 j \\
& \Rightarrow \text { speed }=\sqrt{15^{2}+20^{2}}=25 \mathrm{~ms}^{-1}
\end{aligned}
$$

5)

$$
\begin{aligned}
& A 2 W \times 1 \cdot 5 \alpha \cos \alpha=N R_{c} \times 2 \alpha \Rightarrow N R_{C}=\frac{3}{4} w \cos \alpha \\
& \Rightarrow\left(\frac{3}{4} w \cos \alpha\right) \cos \alpha+N R_{A}=W \Rightarrow N R_{A}=W-\frac{3}{4} w \cos ^{2} \alpha \\
& \therefore N R_{A}=\frac{1}{4} w\left(4-3 \cos ^{2} \alpha\right)= \\
& \cos \alpha=\frac{2}{3} \frac{3}{2} n^{\sqrt{5}} \quad N R_{A}=\frac{1}{4} w\left(4-\left(\frac{2}{3}\right)^{2}\right)=\frac{2}{3} w \\
& \sin \alpha=\frac{\sqrt{5}}{3} \quad N R_{C}=\frac{3}{4} w\left(\frac{2}{7}\right)=\frac{1}{2} w \\
& \Rightarrow\left(\frac{1}{2} w^{\prime}\right) \frac{\sqrt{5}}{3}=\mu\left(\frac{2}{3} w\right) \Rightarrow \frac{\sqrt{5}}{6}=\frac{2}{3} \mu \Rightarrow \mu=\frac{\sqrt{5}}{4}
\end{aligned}
$$

थ? 3 ing $\times 0+\sin g \times 8+$ ling $x 8=(8+4) \operatorname{lig} g \times \bar{x}$

$$
\begin{gathered}
\Rightarrow 40+8 u=(8+4) \times 6.4 \\
\Rightarrow 1.6 u=11.2 \\
\Rightarrow u=7
\end{gathered}
$$

tr $^{4} \quad 15 m g \times 6.4+12 m g \times 4=27 \times / 5 \times \bar{x}$

$$
\text { c) } \begin{aligned}
& \theta=\tan ^{-1}\left(\frac{\frac{70}{27}}{\frac{16}{3}}\right) \\
& \theta=\tan ^{-1}\left(\frac{35}{72}\right) \\
& \theta=25.9^{\circ}(35 t)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\frac{16}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 70=27 \bar{y} \Rightarrow y=\frac{70}{27} \quad G\left(\frac{16}{3}, \frac{70}{27}\right)
\end{aligned}
$$

7) (VD)

$$
\begin{array}{ll}
u d=25 \sin 30=12 \cdot s & S=u t+\frac{1}{2} a t^{2} \\
a l=9 \cdot 8 & 12=12 \cdot 5 t+4 \cdot 9 t^{2} \\
s \downarrow=12 & 4 \cdot 9 t^{2}+12 \cdot 5 t-12=0 \\
& t=0.743377 \ldots
\end{array}
$$

(-4) \quad Vel $=25 \cos 30=\frac{25 \sqrt{3}}{2} \quad x=O B \quad t=0.748377 \ldots$
b) $O B=\frac{25 \sqrt{3}}{2} \times 0.743377 \ldots=16.1 \Rightarrow T B=1.1 \mathrm{~m}(2 x)$
c) (A) $x=15 \quad$ Vel $=\frac{25 \sqrt{3}}{2} \Rightarrow t=\frac{\frac{15}{25 \sqrt{3}}}{\frac{2}{2}}=\frac{6}{5 \sqrt{3}}$
(vi)

$$
\begin{array}{ll}
u \downarrow=12.5 & V L=u+a t=12.5+9.8 \times \frac{6}{5 \sqrt{3}} \\
a \downarrow=9.8 & v \downarrow=19.289639 \ldots
\end{array}
$$

$$
\begin{aligned}
\Rightarrow \text { Speed } & =\sqrt{19.2896399^{2}+\left(\frac{25 \sqrt{3}}{2}\right.} \\
\text { speed } & =29 \mathrm{~ms}^{-1}(25 f)
\end{aligned}
$$

