ML CAN Ob
(a) KE lost $=\frac{1}{2} m u^{2}=\frac{1}{2}(3)(8)^{2}=960$
b) LE lost $=$ Wd against friction

$$
\Rightarrow 96=f_{\max } \times 12 \Rightarrow \mu \times N R=8 \Rightarrow \mu=\frac{8}{3 y}=0.27(24)
$$

2)

$$
\begin{aligned}
& \text { vel }=\frac{d r}{d t}=(2 t+4) i+\left(3-3 t^{2}\right) ; \\
& t=3, v=10 i-24 j \Rightarrow \text { speed }=\sqrt{10^{2}+24^{2}}=13 \mathrm{~ms}^{-1}
\end{aligned}
$$

b)

$$
\begin{aligned}
\text { Initial momentum } & =m u=0.4(10 i-24 j)=4 i-9.6 j \\
& +1 \text { impulse } \\
= & =8 i-12 j \\
& =\text { final mom }=m v=12 i-21.6 j \\
& \div 0.4 \quad v=30 i-54 j
\end{aligned}
$$

3)

b)

$$
\begin{aligned}
& \text { ROO } R 2 \\
& \Rightarrow \frac{7004}{u} \operatorname{lo00g} \times \frac{1}{40}=600 \\
& \Rightarrow \frac{7000}{4}=600-25 g \\
& \Rightarrow u=\frac{7000}{600-25 g} \Rightarrow \frac{19.7 \mathrm{~ms}^{-1}}{(3 \mathrm{st})}
\end{aligned}
$$

4)

b)

$$
\begin{aligned}
\text { Total } K E \text { before } & =\frac{1}{2}(2 m)(3 u)^{2}+\frac{1}{2} m(2 u)^{2} \\
& =11 u^{2}
\end{aligned}
$$

total KE after $=\frac{1}{2}(2 m)\left(\frac{2}{3} u\right)^{2}+\frac{1}{2}(m)\left(\frac{8}{3} u\right)^{2}$

$$
=\frac{4}{a} u^{2}+\frac{32}{a} u^{2}=4 u^{2}
$$

$$
\text { UE lost }=11 u^{2}-4 u^{2}=7 u^{2}
$$

(c)

$$
\begin{aligned}
\text { Initial mom }=m\left(\frac{8}{3} u\right) & =\frac{8}{3} m u \\
\pm \text { impulse } & =\frac{14}{3} \mathrm{mu} \quad \text { (must be }- \text {) } \\
\text { final mom } & =-6
\end{aligned}
$$

$$
=-\frac{6}{3} m u=-2 m u
$$

$$
\Rightarrow m v=-2 m u \Rightarrow v=-2 u
$$

$B \rightarrow$

$$
\begin{aligned}
e= & \frac{\operatorname{sep}}{\text { app }}=\frac{2 x}{\frac{8}{3} x}=\frac{6}{8} \\
& \Rightarrow e=\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
& A \xrightarrow[2 m]{3 u} \quad B \stackrel{2 u}{\stackrel{3 n}{\leftrightarrows}} \quad C L M \Rightarrow 2 m(3 u)+m(-2 u) \\
& =2 m\left(V_{A}\right)+m\left(\frac{8}{3} u\right) \\
& \overrightarrow{V_{A}} \quad \rightarrow \frac{8}{3} u \\
& \Rightarrow 6 x u-2 m u=2 m v_{A}+\frac{8}{3} m u \\
& \Rightarrow \frac{4}{3} u=2 v_{A} \Rightarrow v_{A}=\frac{2}{3} u \\
& l=\frac{\text { sep }}{\text { app }}=\frac{2 u}{5 x} \Rightarrow e=\frac{2}{s}
\end{aligned}
$$

5)

$$
\begin{array}{rl}
94 & 4 m g x 0+2 i n g \times 0+6 m g \times 9=12 m g \bar{x}
\end{array} \begin{aligned}
& \bar{x}=\frac{54}{12} \\
& \bar{x}=4.5
\end{aligned}
$$

$$
\xrightarrow{q} x \quad 2 m g g x-4+4 m g \times 4+6 m g \times 0=12 \log \overline{4}
$$

$$
\bar{y}=\frac{8}{12}=\frac{2}{3}
$$

$$
\left(4.5, \frac{2}{3}\right)
$$

b) $\underbrace{y_{r}}_{r}$

$$
\therefore \quad \mu=\frac{\frac{14}{8} w}{5 w}=\frac{14}{40}=\frac{7}{20}
$$

b)

$$
\begin{aligned}
& R f \uparrow=0 \Rightarrow N R_{A}=(5+k) W \\
& \overrightarrow{R t}=0 \Rightarrow \text { friction }=N R_{B}
\end{aligned}
$$

$$
A 2 W \times 2 \alpha\left(\frac{1}{\sqrt{5}}\right)+4 W \times 4 \phi\left(\frac{1}{\sqrt{5}}\right)=N R_{B} \times 4 \phi\left(\frac{2}{\sqrt{5}}\right)
$$

$$
\Rightarrow 2 W+16 W=8 N R_{B} \Rightarrow N R_{B}=\frac{9}{4} W
$$

$$
f_{\text {max }}=\mu N R A=\frac{7}{20}(5+k) W \quad \text { friction }=N R_{B}=\frac{9}{4} \mathrm{~W}
$$

friction $\leqslant f_{\max } \Rightarrow \frac{9}{4} w \leq \frac{7}{20}(s+h) \not w^{\prime}$

$$
\Rightarrow \quad \frac{45}{7} \leqslant 5+u \Rightarrow u \geqslant \frac{10}{7}
$$

7) (H) $\mathrm{Vel}=11 \cos 30 \quad$ dist $=10 \Rightarrow t=\frac{10}{11 \frac{\sqrt{3}}{2}}=1.0 \mathrm{~S}$
b) $V \uparrow$

$$
\begin{aligned}
& u \uparrow=11 \sin 30=5.5 \quad S=u t+\frac{1}{2} a t^{2} \\
& a \uparrow=-9.8 \\
& \begin{aligned}
t=\frac{20 \sqrt{3}}{33} & S=5.5\left(\frac{20 \sqrt{3}}{33}\right)-4.9\left(\frac{20 \sqrt{3}}{33}\right)^{2} \\
& \\
& S=0.374 \ldots \text { above } A \\
& \Rightarrow C=1-0.374 \ldots \text { below } T \\
& \therefore C_{\text {is }} 0.63 \mathrm{~m} \text { below } T
\end{aligned}
\end{aligned}
$$

c)

$$
\begin{aligned}
& u^{\uparrow}=V \sin 30=\frac{1}{2} V \\
& a=-9.8 \\
& S=1 \text { (above } A \text {) }
\end{aligned}
$$

$$
\vec{H} \quad \text { vel }=v \cos 30 \quad x=10
$$

$$
\Rightarrow t=\frac{10}{v \frac{\sqrt{3}}{2}}=\frac{20 \sqrt{3}}{3 V}
$$

$$
\Rightarrow \quad 1=\left(\frac{1}{2} v\right)\left(\frac{20 \sqrt{3}}{3 y}\right)-4.9\left(\frac{20 \sqrt{3}}{3 v}\right)^{2}
$$

$$
\begin{aligned}
& \Rightarrow 1-\frac{10 \sqrt{3}}{3}=\frac{1960}{3 v^{2}} \\
& \Rightarrow(3-10 \sqrt{3}) v^{2}=1960 \Rightarrow v=\sqrt{\frac{1960}{3-10 \sqrt{3}}} \\
& \quad V=11.7 \mathrm{~ms}^{-1}(3 s t)
\end{aligned}
$$

d) We have ignored wind, air resistance, spin. We have also considered the ball to be a particle, so v could be increased and decreased but still hit the target as the bull might hit the target at the top or bottom of the ball.

